Controllability of Partial Differential Equations and Its Semi-discrete Approximations
نویسنده
چکیده
In these notes we analyze some problems related to the controllability and observability of partial differential equations and its space semidiscretizations. First we present the problems under consideration in the classical examples of the wave and heat equations and recall some well known results. Then we analyze the 1−d wave equation with rapidly oscillating coefficients, a classical problem in the theory of homogenization. Then we discuss in detail the null and approximate controllability of the constant coefficient heat equation using Carleman inequalities. We also show how a fixed point technique may be employed to obtain approximate controllability results for heat equations with globally Lipschitz nonlinearities. Finally we analyze the controllability of the space semi-discretizations of some classical PDE models: the Navier-Stokes equations and the 1 − d wave and heat equations. We also present some open problems.
منابع مشابه
On the Exact Solution for Nonlinear Partial Differential Equations
In this study, we aim to construct a traveling wave solution for nonlinear partial differential equations. In this regards, a cosine-function method is used to find and generate the exact solutions for three different types of nonlinear partial differential equations such as general regularized long wave equation (GRLW), general Korteweg-de Vries equation (GKDV) and general equal width wave equ...
متن کاملThe Stability of Non-standard Finite Difference Scheme for Solution of Partial Differential Equations of Fractional Order
Fractional derivatives and integrals are new concepts of derivatives and integrals of arbitrary order. Partial differential equations whose derivatives can be of fractional order are called fractional partial differential equations (FPDEs). Recently, these equations have received special attention due to their high practical applications. In this paper, we survey a rather general case of FPDE t...
متن کاملUniform controllability properties for space/time-discretized parabolic equations
This article is concerned with the analysis of semi-discrete-in-space and fully-discrete approximations of the null controllability (and controllability to the trajectories) for parabolic equations. We propose an abstract setting for space discretizations that potentially encompasses various numerical methods and we study how the controllability problems depend on the discretization parameters....
متن کاملOn The Simulation of Partial Differential Equations Using the Hybrid of Fourier Transform and Homotopy Perturbation Method
In the present work, a hybrid of Fourier transform and homotopy perturbation method is developed for solving the non-homogeneous partial differential equations with variable coefficients. The Fourier transform is employed with combination of homotopy perturbation method (HPM), the so called Fourier transform homotopy perturbation method (FTHPM) to solve the partial differential equations. The c...
متن کاملAnalysis and approximations of terminal-state tracking optimal control problems and controllability problems constrained by linear and semilinear parabolic partial differential equations
Terminal-state tracking optimal control problems for linear and semilinear parabolic equations are studied. The control objective is to track a desired terminal state and the control is of the distributed type. A distinctive feature of this work is that the controlled state and the target state are allowed to have nonmatching boundary conditions. In the linear case, analytic solution formulae f...
متن کامل